
Computer Science

1 -*£•■£* Carnegie
Mellon

Xffic QUALITY INSPECTED 3
DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

Processor Verification Using Efficient Reductions
of the Logic of Uninterpreted Functions

to Propositional Logic
Randal E. Bryant, Steven German,1 Miroslav N. Velev

May, 1999
CMU-CS-99-115

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

The CMU authors were supported by the Semiconductor Research Corporation under contract
98-DC-068, as well as by grants from Motorola, Intel, and Fujitsu.

19990802 058

'IBM Wteo. Research Center WvMJ^1* ^TEMENT A

Keywords: Formal verification, Processor verification, Uninterpreted functions, Decision proce-
dures

Abstract

The logic of equality with uninterpreted functions (EUF) provides a means of abstracting the ma-
nipulation of data by a processor when verifying the correctness of its control logic. By reducing
formulas in this logic to propositional formulas, we can apply Boolean methods such as Ordered
Binary Decision Diagrams (BDDs) and Boolean satisfiability checkers to perform the verification.
We can exploit characteristics of the formulas describing the verification conditions to greatly
simplify the propositional formulas generated. We identify a class of terms we call "p-terms" for
which equality comparisons can only be used in monotonically positive formulas. By applying
suitable abstractions to the hardware model, we can express the functionality of data values and
instruction addresses flowing through an instruction pipeline with p-terms. A decision procedure
can exploit the restricted uses of p-terms by considering only "maximally diverse" interpretations
of the associated function symbols, where every function application yields a different value except
when constrained by functional consistency.
We present two methods to translate formulas in EUF into propositional logic. The first interprets
the formula over a domain of fixed-length bit vectors and uses vectors of propositional variables
to encode domain variables. The second generates formulas encoding the conditions under which
pairs of terms have equal valuations, introducing propositional variables to encode the equality
relations between pairs of terms. Both of these approaches can exploit maximal diversity to greatly
reduce the number of propositional variables that need to be introduced and to reduce the overall
formula sizes.
We present experimental results demonstrating the efficiency of this approach when verifying
pipelined processors using the method proposed by Burch and Dill. Exploiting positive equal-
ity allows us to overcome the exponential blow-up experienced previously [VB98] when verifying
microprocessors with load, store, and branch instructions.

1 Introduction

For automatically reasoning about pipelined processors, Burch and Dill demonstrated the value
of using propositional logic, extended with uninterpreted functions, uninterpreted predicates, and
the testing of equality [BD94]. Their approach involves abstracting the data path as a collection
of registers and memories storing data, units such as ALUs operating on the data, and various
connections and multiplexors providing methods for data to be transferred and selected. The initial
state of each register is represented by a domain variable indicating an arbitrary data value. The
operation of units that transform data is abstracted as blocks computing functions with no specified
properties other than functional consistency, i.e., that applications of a function to equal arguments
yield equal results: x = y =$■ f(x) = f(y). The state of a register at any point in the computation
can be represented by a symbolic term, an expression consisting of a combination of domain
variables, function and predicate applications, and Boolean operations. Verifying that a pipelined
processor has behavior matching that of an unpipelined instruction set reference model can be
performed by constructing a formula in this logic that compares for equality the terms describing
the results produced by the two models and then proving the validity of this formula.

In their 1994 paper, Burch and Dill also described the implementation of a decision procedure
for this logic based on theorem proving search methods. Their procedure builds on ones originally
described by Shostak [Sho79] and by Nelson and Oppen [NO80], using combinatorial search
coupled with algorithms for maintaining a partitioning of the terms into equivalence classes based
on the equalities that hold at a given step of the search. More details of their decision procedure
are given in [BDL96].

Burch and Dill's work has generated considerable interest in the use of uninterpreted functions
to abstract data operations in processor verification. A common theme has been to adopt Boolean
methods, either to allow integration of uninterpreted functions into symbolic model checkers
[DPR98, BBCZ98], or to allow the use of Binary Decision Diagrams (BDDs) [Bry86] in the
decision procedure [HKGB97, GSZAS98, VB98]. Boolean methods allow a more direct mod-
eling of the control logic of hardware designs and thus can be applied to actual processor designs
rather than highly abstracted models. In addition to BDD-based decision procedures, Boolean
methods could use some of the recently developed satisfiability procedures for propositional logic.
In principle, Boolean methods could outperform decision procedures based on theorem proving
search methods, especially when verifying processors with more complex control logic, e.g., due
to superscalar or out-of-order operation.

Boolean methods can be used to decide the validity of a formula containing terms and unin-
terpreted functions by interpreting the formula over a domain of fixed-length bit vectors. Such an
approach exploits the property that a given formula contains a limited number of function appli-
cations and therefore can be proved to be universally valid by considering its interpretation over
a sufficiently large, but finite domain [Ack54]. If a formula contains a total of m function appli-
cations, then the set of all bit vectors of length k forms an adequate domain for k > log2 m. The
formula to be verified can be translated into one in propositional logic, using vectors of proposi-

1

tional variables to encode the possible values generated by function applications [HKGB97]. Our
implementation of such an approach [VB98] as part of a BDD-based symbolic simulation system
was successful at verifying simple pipelined data paths. We found, however, that the computa-
tional resources grew exponentially as we increased the pipeline depth. Modeling the interactions
between successive instructions flowing through the pipeline, as well as the functional consis-
tency of the ALU results, precludes having an ordering of the variables encoding term values that
yields compact BDDs. Similarly, we found that extending the data path to a complete proces-
sor by adding either load and store instructions or instruction fetch logic supporting jumps and
conditional branches led to impossible BDD variable ordering requirements.

Goel et al. [GSZAS98] present an alternate approach to using BDDs to decide the validity of
formulas in the logic of equality with uninterpreted functions. In their formulation they introduce
a propositional variable eitj for each pair of function application terms Tt and Tjt expressing the
conditions under which the two terms are equal. They add constraints expressing both functional
consistency and the transitivity of equality among the terms. Their experimental results were
also somewhat disappointing. For all previous methods of reducing EUF to propositional logic,
Boolean methods have not lived up to their promise of outperforming ones based on theorem
proving search.

In this paper, we show that the characteristics of the formulas generated when modeling pro-
cessor pipelines can be exploited to greatly reduce the number of propositional variables that are
introduced when translating the formula into propositional logic. We distinguish a class of terms
we call p-terms for which equality comparisons can only be used in monotonically positive for-
mulas. Such formulas are suitable for describing the top-level correctness condition, but not for
modeling any control decisions in the hardware. By applying suitable abstractions to the hardware
model, we can express the functionality of data values and instruction addresses with p-terms.

A decision procedure can exploit the restricted uses of p-terms by considering only "maximally
diverse" interpretations of the associated "p-function" symbols, where every function application
yields a different value except when constrained by functional consistency. We present a method
of transforming a formula containing function applications into one containing only domain vari-
ables that differs from the commonly-used method described by Ackermann [Ack54]. Our method
allows a translation into propositional logic that uses vectors with fixed bit patterns rather than
propositional variables to encode domain variables introduced while eliminating p-function ap-
plications. This reduction in propositional variables greatly simplifies the BDDs generated when
checking tautology, often avoiding the exponential blow-up experienced by other procedures. Al-
ternatively, we can use a encoding scheme similar to Goel et al. [GSZAS98], but with many of the
ejj values set to false rather than to Boolean variables.

Others have recognized the value of restricting the testing of equality when modeling the flow
of data in pipelines. Berezin et al. [BBCZ98] generate a model of an execution unit suitable
for symbolic model checking in which the data values and operations are kept abstract. In our
terminology, their functional terms are all p-terms. They use fixed bit patterns to represent the
initial states of registers, much as we replace p-term domain variables by fixed bit patterns. To

model the outcome of each program operation, they generate an entry in a "reference file" and
refer to the result by a pointer to this file. These pointers are similar to the bit patterns we generate
to denote the p-function application outcomes. This paper provides an alternate, and somewhat
more general view of the efficiency gains allowed by p-terms.

Damm et al consider an even more restricted logic such that in the terms describing the com-
puted result, no function symbol is applied to a term that already contains the same symbol. As a
consequence, they can guarantee that an equality between two terms holds universally if it holds
holds over the domain {0,1} and with function symbols having four possible interpretations: con-
stant functions 0 or 1, and projection functions selecting the first or second argument. They can
therefore argue that verifying an execution unit in which the data path width is reduced to a single
bit and in which the functional units implement only four functions suffices to prove its correct-
ness for all possible widths and functionalities. Their work imposes far greater restrictions than
we place on p-terms, but it allows them to bound the domain that must be considered to determine
universal validity independently from the formula size.

In comparison to both of these other efforts, we maintain the full generality of the unrestricted
terms of Burch and Dill while exploiting the efficiency gains possible with p-terms. In our proces-
sor model, we can abstract register identifiers as unrestricted terms, while modeling program data
and instruction data as p-terms. As a result, our verifications cover designs with arbitrarily many
registers. In contrast, both [BBCZ98] and [DPR98] used bit encodings of register identifiers and
were unable to scale their verifications to a realistic number of registers.

In a recent paper, Pnueli, et al. [PRSS99] also propose a method to exploit the polarity of the
equations in a formula containing uninterpreted functions with equality. They describe an algo-
rithm to generate a small domain for each domain variable such that the universal validity of the
formula can be determined by considering only interpretations in which the variables range over
their restricted domains. A key difference of their work is that they examine the equation structure
after replacing all function application terms with domain variables and introducing functional
consistency constraints as described by Ackermann [Ack54]. These consistency constraints typi-
cally contain large numbers of equations—far more than occur in the original formula—that mask
the original p-term structure. As an example, comparing the top and bottom parts of Figure 6 illus-
trates the large number of equations that may be generated when applying Ackermann's method.
By contrast, our method is based on the original formula structure. In addition, we use a new
method of replacing function application terms with domain variables. Our scheme allows us
to exploit maximal diversity by assigning fixed values to the domain variables generated while
expanding p-function application terms.

The remainder of the paper is organized as follows. We define the syntax and semantics of
our logic by extending that of Burch and Dill's. We prove our central result concerning the need
to consider only maximally diverse interpretations when deciding the validity of formulas in our
logic. As a first step in transforming our logic into propositional logic, we describe a new method
of eUminating function application terms in a formula. Building on this, we describe two meth-
ods of translating formulas into propositional logic and show how these methods can exploit the

term ::= ITE(formula, term, term)

| function-symbol(term,..., term)

formula ::= true | false | -'formula

| (formula A formula) \ (formula V formula)

| (term = term)

| predicate-symbol(term,..., te/ra)

Figure 1: Syntax Rules for the Logic of Equality with Uninterpreted Functions (EUF)

properties of p-terms. We discuss the abstractions required to model processor pipelines in our
logic. Finally, we present experimental results showing our ability to verify a simple, but complete
pipelined processor.

2 Logic of Equality with Uninterpreted Functions (EUF)

The logic of Equality with Uninterpreted Functions (EUF) presented by Burch and Dill [BD94]
can be expressed by the syntax given in Figure 1. In this logic, formulas have truth values while
terms have values from some arbitrary domain. Terms are formed by application of uninterpreted
function symbols and by applications of the TTE (for "if-then-else") operator. The ITE operator
chooses between two terms based on a Boolean control value, i.e., ITE(true,x1,x2) yields xi
while /Tis(false, xi, x2) yields x2. Formulas are formed by comparing two terms with equality,
by applying an uninterpreted predicate symbol to a list of terms, and by combining formulas using
Boolean connectives. A formula expressing equality between two terms is called an equation. We
use expression to refer to either a term or a formula.

Every function symbol / has an associated order, denoted ord(f), indicating the number of
terms it takes as arguments. Function symbols of order zero are referred to as domain variables.
We use the shortened form v rather than v() to denote an instance of a domain variable. Simi-
larly, every predicate p has an associated order ord(p). Predicates of order zero are referred to as
propositional variables, and can be written a rather than a().

The truth of a formula is defined relative to a nonempty domain V of values and an interpreta-
tion / of the function and predicate symbols. Interpretation / assigns to each function symbol of
order k a function from Vk to V, and to each predicate symbol of order k a function from Vk to
{true, false}. For the special case of order 0 symbols, i.e., domain (respectively, propositional)
variables, the interpretation assigns an element of V (resp., {true, false}.) Given an interpreta-
tion / of the function and predicate symbols and an expression E, we can define the valuation of

FormF Valuation I[E]
true
false
-F

FXAF2

p(Tu...,Tk)
T, = T2

true
false

I[Fi] A I[F2]
/(PK/ITJ,...,/^])

/[T1] = /[TJ
mS(F,TuT2)
f(Tu...,Tk) /(/X/ira],...,/^])

Table 1: Evaluation of EUF Fonnulas and Terms

F under /, denoted I[E], according to its syntactic structure. The valuation is defined recursively,
as shown in Table 1. I[E] will be an element of the domain when F is a term, and a truth value
when F is a formula.

A formula F is said to be true under interpretation I when I[F] = true. It is said to be valid
over domain V when it is true over domain V for all interpretations of the symbols in F. F is said
to be universally valid when it is valid over all domains. A basic property of validity is that a given
formula is valid over a domain V iff it is valid over all domains having the same cardinality as V.
This follows from the fact that a given formula has the same truth value in any two isomorphic
interpretations of the symbols in the formula. Another property of the logic, which can be readily
shown, is that if F is valid over a suitably large domain, then it is universally valid [Ack54]. In
particular, it suffices to have a domain as large as the number of syntactically distinct function
application terms occurring in F. We are interested in decision procedures that determine whether
or not a formula is universally valid; we will show how to do this by dynamically constructing a
sufficiently large domain as the formula is being analyzed.

3 Positive Equality with Uninterpreted Functions (PEUF)

We can improve the efficiency of validity checking by treating positive and negative equations
differently when reducing EUF to prepositional logic. Informally, an equation is positive if it does
not appear negated in a formula. In particular, a positive equation cannot appear as the formula
that controls the value of an ITE term; such formulas are considered to appear both positively and
negatively.

g-term ::= ITE(formula, g-term, g-term)

| g-function-symbol(p-term,... , p-term)

p-term ::= g-term

| ITE(formula, p-term, p-term)

| p-fiinction-symbol(p-term,..., p-term)

formula ::= true | false | -^formula

| (formula A formula) \ (formula V formula)

| (g-term = g-term)

| predicate-symbol(p-term,..., p-term)

p-formula ::= formula

| (p-formula A p-formula) | (p-formula V p-formula)

| (p-term=p-term)

Figure 2: Syntax Rules for the Logic of Positive Equality with Uninterpreted Functions (PEUF)

3.1 Syntax

PEUF is an extended logic based on EUF; its syntax is shown in Figure 2. The main idea is
that there are two disjoint classes of function symbols, called p-function symbols and g-function
symbols, and two classes of terms.

General terms, or g-terms, correspond to terms in EUF. Syntactically, a g-term is a g-function
application or an ITE term in which the two result terms are hereditarily built from g-function
applications and ITEs.

The new class of terms is called positive terms, or p-terms. P-terms may not appear in negated
equations, i.e., equations within the scope of a logical negation. Since p-terms can contain p-
function symbols, the syntax is restricted in a way that prevents p-terms from appearing in negative
equations. When two p-terms are compared for equality, the result is a special, restricted kind of
formula called ap-formula.

Note that our syntax allows any g-term to be "promoted" to a p-term. Throughout the syntax
definition, we require function and predicate symbols to take p-terms as arguments. However,
since g-terms can be promoted, the requirement to use p-terms as arguments does not restrict the
use of g-function symbols or g-terms. In essence, g-function symbols may be used as freely in our
logic as in EUF, but the p-function symbols are restricted. To maintain the restriction on p-function
symbols, the syntax does not permit a p-term to be promoted to a g-term.

A formula of the extended logic is a Boolean combination of equations on g-terms and appli-
cations of predicate symbols. Formulas in our logic serve as Boolean control expressions in ITE
terms. A formula can contain negation, and ITE implicitly negates its Boolean control, so only
g-terms are allowed in equations in formulas. Since a predicate formula />(7\,..., Tk), where p
is a predicate symbol and the T, are terms, is not an equation, we allow the terms in predicate
formulas to be chosen from the largest class of terms, namely the p-terms.

Finally, the syntactic class p-formula is the class for which we develop validity checking meth-
ods. P-formulas are built up using only the monotonically positive Boolean operations A and V.
P-formulas may not be placed under a negation sign, and cannot be used as the control for an ITE
operation. As described in later sections, our validity checking methods will take advantage of the
assumption that in p-formulas, the p-terms cannot appear in negative equations.

Observe that PEUF does not extend the expressive power of EUF—we could translate any
PEUF expression into EUF by considering the g-terms and p-terms to be terms and the p-formulas
to be formulas. Instead, the benefit of PEUF is that by distinguishing some portion of a formula as
satisfying a restricted set of properties, we can radically reduce the number of different interpreta-
tions we must consider when proving that a p-formula is universally valid.

As a running example for this paper, we consider the formula x = y =4> h(g(x),g(g(x))) =
h(g(y),g(g(x))), which would be transformed into a p-formula Feg by eliminating the implication:

Feg = -(ar = y) V h{g(x),g(g(x))) = h(g{y),g{g(x))) (1)

^H>-6>

x y

Figure 3: Schematic Representation of Feg.
values are shown as dashed lines.

Domain values are shown as solid lines, while truth

Domain variables x and y must be g-function symbols so that we can consider the equation x = y
to be a formula, and hence it can be negated to give formula ->(x = y). We can promote the g-
terms x and y to p-terms, and we can consider function symbols g and h to be p-function symbols,
giving p-terms g(x), g(y), g(g(x)), h(g(x),g(g(x))), and h(g(y),g(g(x))). Thus, the equation
K9{x),g{g{x))) = h(g(y),g(g(x))) is a p-formula. We form the disjunction of this p-formula
with the p-formula obtained by promoting ^(x = y) giving p-formula Feg.

Figure 3 shows a schematic representation of Feg, using drawing conventions similar to those
found in hardware designs. That is, we view domain variables as inputs (shown along bottom) to
a network of operators. Domain values are denoted with solid lines, while truth values are denoted
with dashed lines. The top-level formula then becomes the network output, shown on the right.
The operators in the network are shared whenever possible. This representation is isomorphic to
the traditional directed acyclic graph (DAG) representation of an expression, with maximal sharing
of common subexpressions.

3.2 Diverse Interpretations

Let T be a set of terms, where a term may be either a g-term or a p-term. We consider two terms to
be distinct only if they differ syntactically. An expression may therefore contain multiple instances
of a single term. We classify terms as either p-function applications, g-function applications, or
TTE terms, according to their top-level operation. The first two categories are collectively referred
to as function application terms. For any formula or p-formula F, define T(F) as the set of all
function application terms occurring in F.

An interpretation / partitions a term set T into a set of equivalence classes, where terms T\
and T2 are equivalent under /, written Ti «/ T2 when /[Tx] = I[T2]. Interpretation /' is said to be
a refinement of / for term set T when Tx «// T2 =$> 7\ «/ T2 for every pair of terms Ti and T2

in T. /' is a proper refinement of / for T when it is a refinement and there is at least one pair of

8

11
12 >

-0, y}, {01H02}, {03}, {M, {M
{*}> {y}, {01,02}, {03}, {M, {M

Inconsistent
Inconsistent

Cl
C2

M> {y}, {01,02}, {y3}, {Äi, M
{«, 03}, {y}, {01}, {02}, {äI}, {M

Diverse wxt. x,y,h
Diverse w.r.t. y, h

Dl
D2

W, {y}, {01}, {02}, {03}, {M, {M
{^,y},{0i,02},{03},{^i,/i2}

Diverse w.r.t. x,y,g,h
Diverse wxt. g, h

Table 2: Example Partitionings of Terms x, y, gx

h(g(x),g(g(x))), and h2 = h(g(y),g(g(x))).
= 9{x), 02 = g(y), 03 = g(g(x)), hx =

terms Ti, T2eT such that 7\ «7 T2, but Tx fa, T2.

Let E denote a subset of the function symbols in formula F. An interpretation / is said to be
diverse for F with respect to E when it provides a maximal partitioning of the function application
terms in T(F) having a top-level function symbol from E relative to each other and to the other
function application terms, but subject to the constraints of functional consistency. That is, for Ti
of the form /(TM,... ,Thk), where/ e E, an interpretation I is diverse with respect to E if I has
Tx w7 T2 only in the case where T2 is also a term of the form f(T2,i,..., T2,k), and Tu «7 T2,»
for all i such that 1 < z < k. If we let EP(F) denote the set of all p-function symbols in F, then
interpretation / is said to be maximally diverse when it is diverse with respect to EP(F). Note that
this property requires the p-function application terms to be in separate equivalence classes from
the g-function application terms.

As an example, consider the p-formula Feg given in Equation 1.
function application terms identified as follows:

There are seven distinct

re y 01 02 , 03 h h2

X y 9{x) 0(y) 0(0(^0) h(9(x),g(g(x))) h(g(y),g(g{x)))

Table 2 shows 6 of the 877 different ways to partition seven objects into equivalence classes. Many
of these violate functional consistency. For example, the partitioning II describes a case where x
and y are equal, but g(x) and g(y) are not. Similarly, partitioning 12 describes a case where g(x)
andg(y) are equal, but h{g(x), g(g(x))) and h(g(y),g(g(x))) are not.

Ehminating the inconsistent cases gives 384 partitionings. Many of these do not arise from
maximally diverse interpretations, however. For example, partitioning Cl arises from an inter-
pretation that is not diverse with respect to g, while partitioning C2 arises from an interpretation
that is not diverse with respect to h. In fact, there are only two partitionings: Dl and D2 that
arise from maximally diverse interpretations. Partition Dl corresponds to an interpretation that
is diverse with respect to all of its function symbols. Partition D2 is diverse with respect to both
g and h, even though terms gx and g2 are in the same class, as are hx and h2. Both of these
groupings are forced by functional consistency: having x = y forces g(x) = g(y), which in turn

forces h(g(x),g(g(x)j) = h(g(y),g(g(x))). Since g and h are the only p-function symbols, D2 is
maximally diverse. t

Theorem 1 A p-formula F is universally valid if and only if it is true in all maximally diverse
interpretations.

First, it is clear that if F is universally valid, F is true in all maximally diverse interpretations.
We prove via the following two lemmas that if F is true in all maximally diverse interpretations it
is universally valid.

Lemma 1 If interpretation J is not maximally diverse for p-formula F, then there is an interpre-
tation J' that is a proper refinement of J such that J'[F] =^> J[F].

Proof: Let 7\ be a term occurring in F of the form /i (ThU ..., Tiikl), where /i is a p-function
symbol. Let T2 be a term occurring in F of the form f2(T2,i,..., T2,k2), where f2 may be either a
p-function or a g-function symbol. Assume furthermore that J[TX] and J[T2] both equal z, but that
either symbols /i and f2 differ, or J[Tlti] ^ J[T2ti] for some value of i.

Let z' be a value not in V, and define a new domain D' = PU {z'}. Our strategy is to construct
an interpretation J' over V that partitions the terms in T(F) in the same way as J, except that it
splits the class containing terms 7\ and T2 into two parts—one containing Ti and evaluating to z',
and the other containing T2 and evaluating to z.

Define function h: V ->• V to map elements of V back to their counterparts in I>, i.e., h(z') =
z, while all other values of x give h(x) equal to x.

For p-function symbol /i, define J'(fi) as:

J'(fA(Tl ru\ ^ / *'> /*(*•■) = «/Pi,,-], 1 <*'-<fci
Ul)(l ^ " W(/i)(M»i) %*■)), otherwise

For other function and predicate symbols, J' is defined to preserve the functionality of interpre-
tation J, while also treating argument values of z' the same as z. That is,«/'(/) for function symbol
/ having ord(f) equal to k is defined such that J'(f)(xu ...,xk) = J(f)(h\xi),..., h(xk)). Sim-
ilarly, J'(p) for predicate symbol/) having ord(p) equal to k is defined such that J'(p)(xu ...,xk) =
J(p)(h(x1),...,h(xk)).

We claim the following properties for the different forms of subexpressions occurring in F:

1. For every formulaG: J'[G] = J[G]

2. For every g-term T: J'[T] = J[T]

3. For every p-termT: h(J'[T}) = J[T)

10

4. For every p-formulaG: J'[G] =*► J[G]

5. J'[Ti] = z' and J'[T2] = 2.

These properties can be proved by induction on the expression depths. Informally, interpreta-
tion J' maintains the values of all g-terms and formulas as occur under interpretation J. It also
maintains the values of all p-terms, except those in the class containing terms 7\ and T2. These
p-terms are split into some having valuation z and others having valuation z'. With respect to p-
formulas, consider first an equation of the form £1 = S2 where £1 and S2 are p-terms. The equation
will yield the same value under both interpretations except under the condition that 5i and S2 are
split into different parts of the class that originally evaluated to z, in which case the equation will
yield true under J, but false under J'. Thus, although this equation can yield different values
under the two interpretations, we always have that J'[Si = S2] => «/[Si = S2]. This implication
relation is preserved by conjunctions and disjunctions of p-formulas, due to the monotonicity of
these operations.

We will now present this argument formally. We define the depth of an expression E, depth(E),
in the familiar way:

1. depth(true) = depth (false) = 0.

2. depth(v) = 0, for domain variable v.

3. depth(a) = 0, for prepositional variable a.

4. For any other expression E, depth(E) is given by 1 plus the maximum depth of a subex-
pression in E.

We prove hypotheses 1 to 4 above by simultaneous induction on the depth of expressions:

For the base case of the induction, we have:

1. Formula: J'[true] = J[true], J'[false] = J[false], and J'[a] = J[a] for any prepositional
variable a.

2. G-term: If v a g-function symbol of zero order, then J'iv) = J(v).

3. P-term: If v is a p-function symbol of zero order, then by the definition of J', h(J'{v)) =
J(v).

4. P-formula: same as formula.

For the induction case, we assume that the inductive hypotheses 1 through 4 hold for all ex-
pressions of depth < n, and show that the hypotheses hold for expressions of depth n + 1.

11

1. Formula: There are several cases, depending on the form of G.

(a) Suppose G has one of the forms ->Gi,G1AG2,GiVG2, where G\ and G2 are formulas.
By the inductive hypothesis, J'[GX} = J[Gi], and J'[G2] = J[G2]. It follows that
J'hd] = JhGj], J'[Gi A G2] = J[GX A G2], and J'td V G2] = J[GX V G2].

(b) Suppose G has the form Sx = S2, where Si, 52 are g-terms. By the inductive hypothesis
on g-terms, J'[Si] = J[Si], and J'[5'2] = J[52]. It follows that ./'[Si = S2] = J[Si =
S2].

(c) The remaining case is that G is a predicate application of the form p(S\,..., Sk), where
JO is a predicate symbol of order k, and Si,..., S*, are p-terms. By the inductive
hypothesis for p-terms, we have h(J'[St]) = J[5,-], for i = 1... fc. By the definition of

J',
J'\p(Su...,Sk)] = J'(p)(J'[S1]1...,J'[Sk])

= J(p)(h(J'[Si}),...,h(J'[Sk}))
= J(P)(J[Si},...,J[Sk})
= J[p(Si,...,Sk)}.

2. G-term: There are two cases.

(a) Suppose T has the form ITE(G, Si, S2), where G is a formula, and Sx and S2 are
g-terms. By the inductive hypothesis, we have J'[G] = J[G], J'[Si) = J[Si], and
J'[S2] = J[S2}. Then J'[ITE{G, SUS2)] = J[ITE(G, SUS2)}.

(b) Suppose T has the form f(Si,...,Sk), where / is a g-function symbol of order k
and Si,..., Sk are p-terms. By the inductive hypothesis, h(J'[Si\) = J[Si\, for i =
1,..., k. Then we have,

J'[/(Si,...,S,)] = J'(/)(J'[Si],...,J'[S,])
= J(f)(h(J'[Si}),...,h(J'[Sk}))
= J(/)(J[Si],...,J[S,])
= J[/(Si,...,Sfc)].

3. P-term: There are three cases.

(a) Suppose T is a g-term. By the inductive hypothesis, J'[T] = J[T). Since J[T] cannot
be equal to z', it must be the case that h(J'[T}) = J[T].

(b) Suppose T has the form ITE(G, S\,S2), where G is a formula, and Si and S2 are p-
terms. By the inductive hypothesis, J'[G] = J[G], h(J'[Si}) = J[Si], and h(J'[S2] =
J[S2]). It follows that

h(J'[ITE(G,SuS2)]) = if J'[G) then h{J'[Sx)) else h(J'[S2})
= if J[G) then J[SX] else J[S2]
= J[ITE(G,SUS2)}.

12

(c) Suppose that T has the form f(Sx,..., Sk), where / is a p-function symbol of order k
and Si,..., Sk are p-terms. Here, we have to consider two cases. The first case is that
the following two conditions hold: (1) / is the function symbol fx, i.e., the function
symbol of the term Tx mentioned at the beginning of the proof of this lemma, and (2)
h(Si) = J[Tlti], for 1 < i < k. If these two conditions hold, then by the definition of
J', Afi(Su ...,£*)] = z', while J[fx(Sx, ..., Sk)} = z. Since h(z') = z, we have
h(J'[fx(Sx,...,Sk)]) = J[fx(Sx,...,Sk)}.

Now we consider the case that one of the two conditions mentioned above does not
hold. The proof of this case is identical to the proof of case 2(b) above.

4. P-formula: There are three cases.

(a) If the p-formula G is a formula, then by the inductive hypothesis, J'[G] = J[G], so
J'[G] => J[G\.

(b) Suppose G has one of the forms Gi A G2, or d V G2, where GUG2 are p-formulas.
By the inductive hypothesis, J'[GX] =$■ J[GX], and J'[G2] =^ J[G2]. Thus we have

J'[GXAG2] = J'[GX] A J'[G2]
=> J[GX] A J[G2]
= J[GXAG2],

so J'[GX A G2] => J[GX A G2}. The proof for Gx V G2 is the same.

(c) Finally, we consider the case that G is a p-formula of the form Sx = S2, where Si
and S2, are p-terms. By the inductive hypothesis, we have that if J'[Si] = z', then
J[Si\ = z, for i = 1,2. Also, by the definition of h, we have that if J'[Si] does not
equal z', then J'[Si] = J[Si\. Now, we consider cases depending on whether J'[Si]
or J'[S2] are equal to z'. If both terms are equal to z' in J', then both J[Si] and J[S2]
must be equal to z, so the equation is true in both J' and J. If neither J'[Sx] nor J'[S2]
is equal to z', then ./'[Si] = J[SX] and J'[S2] = J[S2], so the equation has the same
truth value in J' and J. The last case is that exactly one of the p-terms is equal to z' in
J'. In this case, the equation is false in J', so we have J'[G] =$> J[G). This completes
the inductive proof.

Property 5 above, which implies that J' is a proper refinement, is a consequence of the defi-
nition of J' and the inductive properties 2 and 3. First, we show that J'\Ti] = z'. By definition,
J'[TX] = J'(fi)(J'[T1A}7..., J'[T1M]). By property 3 on p-terms, we can assume h(J'[Tu]) =
J[TM], for alii in the range 1 < i < kx. By the definition of J'(fx), we have J^f^J^T^],..'., J'[TUl])
z'.

The proof that J'[T2] = z is in two cases, depending on whether Tx and T2 are applications of
the same function symbol.

13

1. First, consider the case that Ti = /i (Thl,..., TlM) and T2 = /2(T2il,..., T2,A,2), where /x

and /2 are different function symbols. In this case,

J'[T2] = J'(f2)(J'[T2,1},...,J'[T2,k2})
= J(f2)(h(J'[T2A}),..., h(J'[T2>,2])),by the definition of J'(/2)
= J(f2){J[T2,i],..., J[T2 jt2]), by the inductive hypothesis

2. Finally, we have the case that /i and f2 are the same function symbol, and there is some
value of / with 1 < / < fci, such that J[Thi] does not equal J[T2ii\. Here, we have:

J'[h(T2.u..., T2M)\ = J'(/0(J'[T2il],..., J'{T2,k2])

By property 3, h{J'[Tu}) = J[T2,i], for all i such that 1 < i < h. Since J[TU] does not
equal J[T2,/], the value of the above application of J'(fi) is:

J'(mJ'[T2A], • • •, ^'[r2lfca]) = J(/i)(A(j'[r2ll]),..., /»(J'[r2lfc2]))
= J(/i)(J[r2,i],...,y[r2lifcB])
= J[/,(r2ll rJlia)]

D

Lemma 2 For anv interpretation I and p-formula F, there is a maximally diverse interpretation
I* for F such that I*[F] => I[F].

Proof: Starting with interpretation I0 equal to /, we define a sequence of interpretations
io, Iu... by repeatedly applying the construction of Lemma 1. That is, we derive each inter-
pretation Ii+1 from its predecessor /, by letting J = k and letting Ii+i = J'. Interpretation
7i+i is a proper refinement of its predecessor /, such that Ii+i[F] =^> Ii[F]. At some step n, we
must reach a maximally diverse interpretation /„, because our set T{F) is finite and therefore
can only be properly refined a finite number of times. We then let /* be /„. We can see that
r[F) = In[F] =*►•••=> I0[F] = I[F), and hence I*[F] => I[F]. □

The completion of the proof of Theorem 1 follows directly from Lemma 2. That is, if we start
with any interpretation / for p-formula F, we can construct a maximally diverse interpretation /*
such that I*[F] =$■ I[F]. Assuming F is true under all maximally diverse interpretations, I*[F]
must hold, and since I*[F] =$■ I[F], I[F] must hold as well.

14

3.3 Exploiting Positive Equality in a Decision Procedure

A decision procedure for PEUF must determine whether a given p-formula is universally valid.
The procedure can significantly reduce the range of possible interpretations it must consider by
exploiting the maximal diversity property. Theorem 1 shows that we can consider only interpreta-
tions in which the values produced by the application of any p-function symbol differ from those
produced by the applications of any other p-function or g-function symbol. We can therefore con-
sider the different p-function symbols to yield values over domains disjoint with one another and
with the domain of g-function values. In addition, we can consider each application of a p-function
symbol to yield a distinct value, except when its arguments match those of some other application.

4 Eliminating Function Applications

Most work on transforming EUF into prepositional logic has used the method described by Ack-
ermann to eliminate applications of functions of nonzero order [Ack54]. In this scheme, each
function application term is replaced by a new domain variable and constraints are added to the
formula expressing functional consistency. Our approach also introduces new domain variables,
but it replaces each function application term with a nested ITE structure that directly captures the
effects of functional consistency. As we will show, our approach can readily exploit the maximal
diversity property, while Ackermann's cannot.

4.1 Function Application Elimination Example

We demonstrate our technique for replacing function applications by domain variables using
p-formula Feg (Equation 1) as an example, as illustrated in Figure 4. First consider the three
applications of function symbol g: g(x), g(y), and g(g{x)), which we identify as terms Tx, T2, and
T3, respectively. Let vgx, vg2, and vg3 be new domain variables. We generate new terms Ui, U2,
and U3 as follows:

Ui = v9l (2)

U2 = ITE(y = x,vg1,vg2)

U3 = ITE(vg1 = x,vg1,ITE(vg1 = y,vg2,vg3))

Observe that we use variable vgu the translation of g(x), to represent the argument to the outer
application of function symbol g in the term g(g(x)). In general, we must always process nested
applications of a given function symbol working from the innermost to the outermost. Given
terms U\, U2, and U3, we eliminate the function applications by replacing each instance of T» in

15

Initial formula:

:x=>- -o-

<D—-
-£>- JD-

DS-

x y

After removing applications of function symbol g:

DG>---? -0-

n

x>
D5>

x y vg1
v82

v83

After removing applications of function symbol h:

zx=>-
-+-

■©-■

n

:©

^DS:

:©-

>
:e>-

x> :©-

* y vg. V*2V*3 v/ij v/i2

Figure 4: Removing Function Applications from Feg.

16

«/ I*[Ui] I*[U2] nus]
{*},&} Ag(x)} 1 2 3
{x,y},{g(x)} 1 1 3
{x},{y,g(x)} 1 2 2
{x,g(x)},{y} 1 2 1
{x,y,g(x)} 1 1 1

Table 3: Possible valuations of terms in Equation 2 when each variable vg{ is assigned value i.

the formula by Ul for 1 < i < 3, as shown in the middle part of Figure 4. We use multiplexors in
our schematic diagrams to represent ITE operations.

Observe that as we consider interpretations with different values for variables vgx,vg2, and vg3

in Equation 2, we implicitly cover all values that an interpretation of function symbol g in formula
Feg may yield for the three arguments. The nested ITE structure shown in Equation 2 enforces
functional consistency. For example, Table 3 shows the possible valuations of the three terms of
Equation 2 for an interpretation /* assigning values 1, 2, and 3 to domain variables vgx, vg2, and
vg3, respectively. For each possible partitioning by I* of arguments x, y, and g(x) into equivalence
classes, we get matching valuations precisely for equivalent arguments.

We remove the two applications of function symbol h by a similar process. That is, we intro-
duce two new domain variables vhx and vh2. We replace the first application of h by vhx and the
second by an ITE term that compares the arguments of the two function applications, yielding vhx

if they are equal and vh2 if they are not. The final form is illustrated in the bottom part of Figure
4. The translation of predicate applications is similar, introducing a new prepositional variable for
each application. After removing all applications of function and predicate symbols of nonzero
order, we are left with a formula F*g containing only domain and propositional variables.

4.2 Algorithm for Eliminating Function and Predicate Applications

The general translation procedure follows the form shown for our example. It iterates through the
function and predicate symbols of nonzero order. On each iteration it eliminates all occurrences of
a given symbol. At the end we are left with a formula containing only domain and propositional
variables.

The following is a detailed description of the process required to eliminate all instances of a
single function symbol / having order k > 0 from a formula G. We use the variant of formula
Feg shown schematically at the top of Figure 5. In this variant, we have replaced function symbol
g with /. In the sequel, if E is an expression and T and U are terms, we will write E[T «- U]
for the result of substituting U for each instance of T in E. Let Tx,..., Tn denote the syntactically
distinct terms occurring in formula G having the application of / as the top level operation. We

17

Initial formula showing /-order contours:

TOO-

After removing applications of function symbol /:

Sl .1 S;

3=>-- -G-

n

U,

U„ Xfr
D&

£/,

^xs>-

Figure 5: Illustration of Function Application Removal

18

refer to these as "/-application" terms. Let the arguments to / in /-application term T8 be the terms
Si,i,..., Sitk, so that T{ has the form /(#,!,..., Sitk). Assume the terms Tu ..., Tn are ordered
such that if T{ occurs as a subexpression of T, then i < j. In our example the /-application terms
are: Ti = f(x), T2 = f(y) and T3 = f{f(x)). These terms have arguments: 5M = x, S2,i = y,
and 53,i = /(x).

The translation processes the /-application terms in order, such that on step i it replaces all
occurrences of the 2 th application of function symbol / by a nested ITE term. Let u/l5..., vfn

be a new set of domain variables not occurring in F. We use these to encode the possible values
returned by the /-application terms.

For any subexpression E in G define its integer-valued /-order, denoted o}(E), as the highest
index i of an /-application term T{ occurring in E. If no /-application terms occur in E, its /-order
is defined to be 0. By our ordering of the /-application terms, any argument Siti to /-application
term T{ must have of(Si,i) < of(Ti), and therefore of(Ti) = i. For example, the contour lines
shown in Figure 5 partition the operators according to their /-order values.

The transformations performed in replacing applications of function symbol / can be expressed
by defining the following recurrence for any subexpression EofG:

£(°) = E

E(i) ± EV-VF?-
1
) <r-Ui], l<i<n (3)

E = E^m\ where m = of(E)

In this equation, term ?f "~x) is the form of the i^ /-application term T{ after all but the topmost
application of / have been eliminated. Term Ut is a nested ITE structure encoding the possible
values returned by T8 while enforcing its consistency with earlier applications. £/,- does not contain
any applications of function symbol /. For a subexpression E with of(E) = m, its form E^
will contain no applications of function symbol /. We denote this form as E. Observe that for any
i > oj(E), term r/J_1) does not occur in E®, and hence E® = E for alii > of(E). Observe
also that for /-appHcation term Tit we have % = T^ = £/,-.

Ui is defined in terms of a recursively-defined term Vitj as follows:

Vi,i = vfi, 1 < i < n
yi,j = JTE{d^ vfj, K-j+i), 1 < j < i < n (4)

Ui = KM, \<i<n

where for each j < i, formula Citj is true iff the (transformed) arguments to the top-level applica-
tion of / in the terms T8 and Tj have the same values:

Cij = A ki = S3,i (5)
KKk

Observe that the recurrence of Equation 4 is well-defined, since for all argument terms of the form
Sj,i for 1 < j < i and 1 < / < k, we have of(Sjti) < i, and hence terms of the form 5,-,/ and 5,-,/,
as well as term VJ-j+i are available when we define K,j •

19

The lower part of Figure 5 shows the result of removing the three applications of / from our
example formula. First, we have U\ = vflt giving translated function arguments: 5'i,i = x,
5*2,1 = y, and 63,1 = vfl. The comparison formulas are then: C2,i — (y = x), C3ii = (vf1 = x),
and C*3,2 = (vfi = y). From these we get translated terms:

U2 = ITE(y = x,vf1,vf2)

U3 = !TE(vf1 = x,vf1,rrE(vf1 = y,vf2,vf3))

We can see that formula G = G^ will no longer contain any applications of function symbol
/. We will show that G is universally valid if and only if G is.

In the following correctness proofs, we will use a fundamental principle relating syntactic
substitution and expression evaluation:

Proposition 1 For any expression E, pair of terms T, U, and interpretation I of all of the symbols
in E, T, and U, if I[T] = I[U] then I[E[T f- U]] = I[E}.

We will also use the following characterization of Equation 4. For value i such that 1 <
i < n and for interpretation / of the symbols in £/,-, we define the least matching value of i
under interpretation /, denoted lmi(i), as the minimum value j in the range 1 < j < i such that
IlSjj] = I[Si,i] for all / in the range 1 < I < k. Observe that this value is well defined, since i
forms a feasible value for j in any case.

Lemma 3 For any interpretation I, /[[/,-] = I(vfj), where j = lm.j(i).

Proof: For value m in the range 1 < m < i define lmi(m,i) as the minimum value of j in the
range m. < j < i such that I[Sjj] = I[Sij] for all / in the range 1 < / < k. By this definition
lmi(i) = lmi(l,i). Observe also that if j = lmi(m, i) then /[C,-,j] = true. In addition, for any
value m' in the range m < m' < i, if lmi(m, i) > m', then lmi(m, i) = lmi(m', i).

We prove by induction on m that 7[V^m] = I(vfj), where j = lmi(m, i). The base case of
m = i is trivial, since lmi(i, i) = i, and V^- = vf{.

Assuming the property holds for m + 1, we consider two possibilities. First, if lmi(m, i) = m,
we have /[C;,m] = true, and hence the top-level ITE operation in V^m (Equation 4) will select its
first term argument vfm, giving 7[K,m] = I(vfm). On the other hand, if lm.[(m, i) > m, we must
have I[Citm] = false, and hence the top-level ITE operation in V^m will select its second term
argument Vj,m+i, giving /[K,™] = /[K\m+i]. which by the inductive hypothesis equals I(vfj) for
j = lmi(m + 1, i). Since lmi(m, i) > m + 1, we must also have lmi(m, i) = lmi(m + 1, i), and
hence /[Vi,m] = I(vf'•), where j = lmi(m,i).

Since Ui is defined as K',i. our induction argument proves that I[Ui\ = I(vfj) for j =
/m/(l, i) — lmj(i). □

20

Lemma 4 Any interpretation J of the symbols in G can be extended to an interpretation J of the
symbols in both G and G such that for every subexpression E ofG, J[E] = J[E] = J[E].

Proof: We provide a somewhat more general construction of J than is required for the proof
of this lemma in anticipation of using this construction in the proof of Lemma 6. Given J defined
over domain V, we define J over a domain V such that V D V.

We define J for the function and predicate symbols occurring in G based on their definitions in
J. For any function symbol / in G having ord(f) = k, and any argument values xu...,xk € V,
we define J{f)(xu ...,xk\= J(f)(xi,..., xk). For argument values xu...,xk € V such that
for some i, X{ £ V, we let J(f)(x1,..., xk) be an arbitrary domain value. Similarly, for predicate
symbol p, we define J(p) to yield the same value as J(p) for arguments in V and to yield an
arbitrary truth value when at least one argument is not in V.

One can readily see that J[E] = J[E] for every subexpression E of G. This takes care of
the second equality in the statement of the lemma, and hence we can concentrate on the relation
between J[E] and J[E] for the remainder of the proof.

Recall that u/l5..., vfn are the domain variables introduced when generating the nested ITE
terms Ui,...Un. Our strategy is to define interpretations of these variables such that each £/".
mimics the behavior of the original /-application term T, in G.

We consider two cases. For the case where lmj(i) = i, we define J(vf{) = J[Ti], i.e., the
value of the 2th /-application term in G under J. Otherwise, we let J(vf{) be an arbitrary domain
value—we will show that its value does not affect the valuation of any expression E in G having a
counterpart E in G.

We argue by induction on i that J[E^] =J[E] for any subexpression E of G. For the case
where of(E) < i, this hypothesis implies that J[E] = J[E]. The base case of i = 0 is trivial, since
EW is defined to be E.

Suppose that for every j in the range 1 < j < i and every subexpression D of G, we have
J[DW] = J[D], and consequently that J[D] = J[D] for the case where of(D) < i. We must
show that for every subexpression E of G, we have J[E^] = J[E].

We first focus our attention on term T? in G and its counterpart £/,- in G, showing that J [[/,-] =
J[Ti], The /-application terms for all j such that j < i have of(Tj) = j < i, and hence we can
assume that J[Uj] = J[Tj] for these values of j. Furthermore, any argument Sjj to an /-application
term for j < i and 1 < / < k has of(Sjti) < j < i, and hence we can assume J[Sjti] = J[Sjti\.

We consider two cases: lrrij(i) = i, and lmj(i) < i. In the former case, we have by Lemma 3
that j[Ui] = J(vfi). Our definition of J(u/t) gives j[Ui] = J{vf{) = J[T& Otherwise, suppose
that lmj(i) = j < i. Lemma 3 shows that «/[£/,] = J(vfj). We can see that lmj(j) = j,

and hence J{vfj) is defined to be J[T3]. By the definition of Im we have J[Sj,{\ = J[Siti] for

1 < / < k. By the induction hypothesis we have J[Sjti] = J[Sjti], since Of(Sjj) < i, and similarly

21

that J[Siti] = J[Si,i]. By transitivity we have J[Sjj] = J[Si,i] for all / such that 1 < / < k, i.e., the
arguments to /-application terms 7) and T, have equal valuations under J. Function consistency
requires that j[Tj] = J[Ti}. From this we can conclude that j[Ui] = J[Uj] = J[T3] = J[Ti].
Combining these cases gives J[U{] = J[Ti\.

For any subexpression E its form E^ differs from E(l~1^ only in that all instances of term
T/

!_1)
 have been replaced by £/,. We have just argued that J[Ui] = J[Ti\, and by the induction

hypothesis we have that J[T}
1
~

1)
] = J[Ti], giving by transitivity that J[T/

,_1)
] = J[Ui). Proposi-

tion 1 implies that J\E®\ = J[E{i-% and our induction hypothesis gives J^'--1)] = j[E\. By
transitivity we have J[E^] = J[E).

To complete the proof, we observe that our induction argument implies that for any subexpres-
sion E of G, J[EW] = J[E], including for the case where m = of(E), giving J[E] = J[£<m>] =
J[E}. D

Lemma 5 Any interpretation J of the symbols in G can be extended to an interpretation J of the
symbols in both G and G such that for every subexpression E ofG, J[E] = J[E] = J[E].

Proof: We define J to be identical to J for any symbol occurring in G. This implies that
J[E] = J[E] for every subexpression E of G. This takes care of the second equality in the
statement of the lemma, and hence we can concentrate on the relation between J[E] and J[E] for
the remainder of the proof.

For function symbol/, we define J(/)(xi,... ,xk) for domain elements xu . ..,Xk as follows.
Suppose there is some value j such that xi = J[Sjj] for all / such that 1 < I < k, and such that
j = Imj(j). Then we define J(/)(x1,..., a-*.) to be J(vfj). If no such value of j exists, we let
J(f)(x\,..., Xk) be some arbitrary domain value.

We argue by induction on i that J[E] = J[E^] for any subexpression E of G. For the case
where oj(E) < i, this hypothesis implies that J[E] = J[E\. The base case of i = 0 is trivial, since
EW is defined to be E.

Suppose that for every j in the range 1 < j < i and every subexpression D of G, we have
J[D] = J[D^}, and consequently that J[D] = J[D) for the case where oy (D) < i. We must show
that for every subexpression E of G, we have J[E] = J[E^].

We focus initially on term T8 in G and its counterpart Ui in G, showing that «/[T,-] = J[Ui\. Any
/-application term Tj for j < i has oj(Tj) = j < i, and hence we can assume that J[Tj] = J[fj\.
Furthermore, any argument Sjj to an /-application term for j < i and 1 < I < k has OJ(SJJ) <
j < i, and hence we can assume that J[Sjj] = J[Sjj].

We consider two cases: lm,j(i) = i, and lmj(i) < i. In the former case, we have by Lemma
3 that J[Ui] = J(vfi). In addition, J(f) is defined such that J[T{] = J{f)(J[SiA],..., J[Silk]) =
J(f){J[Siti],...,J[Si,k]) = J(vfi), giving J[Tt] = J(vft) = J[Ut]. Otherwise, suppose that
lmj(i) = j < i. Lemma 3 shows that «/[£/,-] = J(vfj). We can see that lmj(j) = j, and hence

22

J(/) is defined such that J{f)(J[Sjti],..., J[Sjtk]) = J(vfj). For any / such that 1 < / < k,

we also have by the definition of Im that J[Sj,i\ = J[Si,i\. By the induction hypothesis we have

J[Sj,i\ = J[Sj,i\> since °f(Sj,i) < i> and similarly that J[Sij] = J[Siti\. By transitivity we have
J[Sj,i] = J[Si,i], i.e., the arguments to /-application terms T, and T, have equal valuations under
J. Functional consistency requires that J[Tj] = J[T,\. Putting this together gives J[T{} = J[T3] =
J(f)(J[Sjtx],..., J[Sj>k}) = J(f)(J[$jtl],..., Jfe]) = J{vf3) = J[Ui\.

For any subexpression E its form E(i) differs from E^~^ only in that all instances of term
Tf'1' have been replaced by £/*. We have just argued that J[Ti] = J[Ui], and by the induction
hypothesis we have that J[T{] = J[2f-1)], giving by transitivity that J[Tf_1)] = J[Ut]. Proposi-
tion 1 imphes that J[E^-^} = J[E®], and our induction hypothesis gives J[E] = J[E^~% By
transitivity we have J[E] = J[El%

To complete the proof, we observe that our induction argument implies that for any subexpres-
sion E of G, J[E] = J[E^m\ including for the case where m = of(E), giving J[E] = J[E^} =
J[E}. D

An application of a predicate symbol having nonzero order can be removed by a similar pro-
cess, using newly generated propositional variables to encode the possible values returned by the
predicate applications. By an argument similar to that made in Lemma 4, we can extend an in-
terpretation to include interpretations of the propositional variables such that the original and the
transformed formulas have identical valuations. Conversely, by an argument similar to that made
in Lemma 5, we can extend an interpretation to include an interpretation of the original predicate
symbol such that the original and the transformed formulas have identical valuations.

Suppose formula F contains applications m different function and predicate symbols of nonzero
order. Starting with F0 = F, we can generate a sequence of formulas F0, Ft,..., Fm. Each for-
mula Fi is generated from its predecessor F,-_x by letting G = Ft and Fi+1 = G in our technique
to eliminate all instances of the z* function or predicate symbol. Let F* = Fm denote the formula
that will result once we have ehminated all applications of function and predicate symbols having
nonzero order.

Theorem 2 For EUF formula F, the transformation process described above yields a formula F*
such that F is universally valid if and only ifF* is universally valid.

Proof: This theorem follows by simply inducting on the number of function and predicate
symbols in F having nonzero order. That is, for any interpretation / of the function and predicate
symbols of F, we construct a sequence of interpretations I = I0,Iu...,Im. Each interpretation
U is generated by extending its predecessor 7;_x by letting J = 1^ and I, = J in Lemma 4 or a
similar one for predicate applications. The effect is to include in /, interpretations of the domain
or propositional variables introduced when ehminating the ^ function or predicate symbol. We
then define interpretation /* to be identical to Im for every variable appearing in F*. By induction,

23

we have I*[F*] = I[F]. If F* is universally valid, we have I[F] = I*[F*] = true. Since this
construction can be performed for any interpretation /, F must also be universally valid.

Conversely, starting with an interpretation /* of the domain and propositional variables of F*,
we can define a sequence of interpretations /* = Im, Im_u ..., I0, using the construction in the
proof of Lemma 5 (or a similar one for predicate applications) to generate an interpretation of
each function or predicate symbol in F. We then define interpretation / to be identical to I0 for
every function or predicate symbol appearing in F. By induction, we have I[F] = I*[F*]. If F is
universally valid, we have I*[F*] = I[F] = true. Since this construction can be performed for
any interpretation /*, F* must also be universally valid. D

4.3 Assigning Distinct Values to Variables Representing P-Function Appli-
cations

We can exploit the maximal diversity property by considering only interpretations that assign dis-
tinct values to the domain variables generated when replacing p-function applications by nested
ITE terms.

For example, by using an interpretation /* that assigns distinct values 1, 2, and 3 to variables
ü/i> u/2' ^d vf3 in Equation 2, we generate distinct values for the terms U\, U2, and f/3, except
when there are matches between the arguments xx, x2, and x3. On the other hand, our encoding
still considers the possibility that the arguments to the different applications of / may match under
some interpretations, in which case the function results should match as well.

To show this formally, consider the effect of replacing all instances of a function symbol /
in a formula G by nested ITE terms, as described earlier, yielding a formula G with new domain
variables vf1,..., vfn. We first show that when we generate these variables while eliminating
p-function applications, we can assume they have a diverse interpretation.

Lemma 6 Let Y.be a subset of the symbols in G, and let G be the result of eliminating function
symbol f from G by introducing new domain variables vf1,..., vfn. If f G S, then for any
interpretation J that is diverse for G with respect to S, there is an interpretation J that is diverse
for G with respect to S - {/} U {vf1:..., vfn} such that J[G] = J[G}.

Proof: Given interpretation J defined over domain V, we define interpretation J over a domain
V = V U {zi,..., zn}. Each Z{ is a unique value, i.e., z, ^ ZJ for any i ^ j, and z, 0 V.

The proof of this lemma is based on a refinement of the proof of Lemma 4. Whereas the
construction in the earlier proof assigned arbitrary values to the new domain variables in some
cases, we select an assignment that is diverse in these variables. As in the construction in the proof
of Lemma 4, we define J for any function or predicate symbol in G to be identical to that of J
when the arguments are all elements of V. When some argument is not in V, we let the function
(respectively, predicate) application yield an arbitrary domain (resp., truth) value.

24

For domain variable vfi introduced when generating term £/,-, we consider two cases. For the
case where lm3(i) = i, we define «/(«/,•) = J[Tj], i.e., the value of the i* /-application term in G
under J. For the case where lm,j(i) < i, we define J(vf{) = z{. We saw in the proof of Lemma
4 that we could assign arbitrary values in this latter case and still have J[G] = J[G\. In fact, for
every subexpression E of G, we have that its counterpart E in G satisfies J[E] = J[E].

We must show that J is diverse for G with respect to E - {/} U {u/1?..., vfn}. We first
observe that J is identical to J for all function application terms in G, and hence J must be diverse
with respect to E for G. We also observe that J assigns to each variable vf{ either a unique value
Zi or the value yielded by /-application term T- in G under j.

Suppose there were distinct variables vf{ and vf ■ such that J[vfz] - J[vfj]. This could only
occur for the case that J(i>/,-) = J[T;] = j[Tj] = J{vfj), but this would imply that lm3{i) =
lmj(j). We cannot have both lmj(i) = i and lmj(j) = j, and hence either vfi or u/ • would have
been assigned unique value z{ or ZJ, respectively. Thus, we can conclude that J[vf{] ^ J[vf f\ for
distinct variables vf{ and vf j.

In addition, we must show that interpretation J does not create any matches between a new
variable vf4 and a function apphcation term T in G that does not have / as the topmost function
symbol. Since J is diverse with respect to E for G and / G S, any function apphcation term T
in C that does not have function symbol / as its topmost symbol must have J[T] ^ j[Ti] for all
1 < i < n. In addition, we have J[T] ^ Zi for all 1 < i < n. Hence, we must have J[T] ^ J(t/4).
D

We must also show that the variables introduced when eliminating g-function applications do
not adversely affect the diversity of the other symbols.

Lemma 7 Let S be a subset of the symbols in G, and let G be the result of eliminating function
symbol f from G by introducing new domain variables vf1:..., vfn. If f £ S, then for any
interpretation J that is diverse for G with respect to S, there is an interpretation J that is diverse
for G with respect to E such that J[G] = J[G].

Proof: The proof of this lemma is based on a refinement of the proof of Lemma 4. Whereas the
construction in the earlier proof assigned arbitrary values to some of the new domain variables, we
select an assignment such that we do not inadvertently violate the diversity of the other function
symbols.

We define J to be identical to J for any symbol occurring in G. For each domain variable vf\
introduced when generating term Uit we define j(vf{) = j[Ti\. This differs from the interpretation
defined in the proof of Lemma 4 only in that give fixed interpretations of domain variables that
could otherwise be arbitrary, and hence we have have J[G] = J[G). In fact, for every subexpres-
sion E of G, we have that its counterpart E in G satisfies J[E] = J[E].

We must show that J is diverse for G with respect to E. We first observe that J is identical
to J for all function apphcation terms in G, and hence J must be diverse for G with respect to

25

S. We also observe that J assigns to each variable vf{ the value of /-apphcation term T,-. For
term T having the application of function symbol g e S as the topmost operation, we must have
J[T] =j[T] ^ J[Ti] = J[vfz]. Hence, we are assured that the values assigned to the new variables
under J do not violate the diversity of the interpretations of the symbols in E. □

Suppose we apply the transformation process of Theorem 2 to a p-formula F to generate a
formula F*, and that in this process, we introduce a set of new domain variables V to replace the
applications of the p-function symbols. Let £*(F) be the union of the set of domain variables in
£P(F) and V. That is, £*(F) consists of those domain variables in the original formula F that were
p-function symbols as well as the domain variables generated when replacing applications of p-
function symbols. Let S*(F) be the domain variables in F* that are not in £*(F). These variables
were either g-function symbols in F or were generated when replacing g-function applications.

We observe that we can generate all maximally diverse interpretations of F by considering
only interpretations of the variables in F* that assign distinct values to the variables in S*(F):

Theorem 3 PEUF formula F is universally valid if and only if its translation F* is true for every
interpretation I* that is diverse over S*(F).

Proof: By Theorem 2, the universal validity of F implies that of F*. The theorem follows
by inducting on the number of function and predicate symbols in F having nonzero order. For
the induction step we use Lemma 6 when eliminating all applications of a p-function symbol, and
Lemma 7 when eliminating all applications of a g-function symbol. When ehminating a predicate
symbol, we do not introduce any new domain variables. □

4.3.1 Discussion

Ackermann also describes a scheme for replacing function apphcation terms by domain variables
[Ack54]. His scheme simply replaces each instance of a function apphcation by a newly-generated
domain variable and then introduces constraints expressing functional consistency as antecedents
to the modified formula. As an illustration, Figure 6 shows the result of applying his method to
formula Feg of Equation 1. First, we replace the three applications of function symbol g with new
domain variables vgx, vg2, and vg3. To maintain functional consistency we add constraints

(x = y =$■ vg1 = vg2)A(x = vg1 =>■ vg1 = vg3)f\(y=vgl =» vg2 = vg3)

as an antecedent to the modified formula. The result is shown in the middle of Figure 6, using
Boolean connectives A, V, and -■ rather than =>. In this diagram, the three constraints listed above
form the middle three arguments of the final disjunction. A similar process is used to replace the
applications of function symbol h, adding a fourth constraint vg± = vg2 A vg3 — vg3 =$■ vhi = vh2.
The result is shown at the bottom of Figure 6.

There is no clear way to exploit the maximal diversity with this translated form. For example,
if we consider only diverse interpretations of variables vglt vg2, and vg3, we will fail to consider
interpretations of the original formula for which x equals y.

26

Initial formula:

os>-e

x y

After removing applications of function symbol g:

;^E>-

'";^>"

>0-eJ2>-^2>-

'^?G>-e-e-

x y vg: v^2vg3

After removing applications of function symbol h:

DG>—-

Figure 6: Ackermann's Method for Replacing Function Applications in F(eg-

27

4.4 Using Fixed Interpretations of the Variables in E* (F)

We can further simplify the task of determining universal validity by choosing particular domains
of sufficient size and assigning fixed interpretations to the variables in E*(F). The next result
follows from Theorem 3.

Corollary 1 Let Vp and Vg be disjoint subsets ofdomain V such that \VP\ > \Yt*(F)\and\T>g\ >
|S*(F)|. Let a be any 1-1 mapping a: S*(F) -» Vp. PEUF formula F is universally valid if
and only if its translation F* is true for every interpretation I* such that I*(vp) = a(vp)for every
variable vp G S*(F), and I*(vg) € Vg for every variable vg € S*(F).

Proof: Consider any interpretation J* of the variables in S*(F) U S*(F) that is diverse over
S*(F). We show that we can construct an isomorphic interpretation /* that satisfies the restrictions
of the corollary.

Let V'p (respectively, V'g) be the range of J* considering only variables in S*(F) (resp., S* (F)).
The function J*: S*(F) ->■ Vp must be a bijection and hence have an inverse J*-1: Vp -> S*(F).
Furthermore, we must have \T>'g\ < |S*(F)| < \Vg\. Let ap be the 1-1 mapping crp:Vp -)■ Vp

defined for any z in V'p, as <rp(z) = a{J*~x (z)). Let ag be an arbitrary 1-1 mapping ag:Vg^Vg.
We now define /* such that for any variable t; in S*(F) (respectively, S*(F)) we have 7*(u) equal
to crp(J*(u)) (resp., a5(J*(u))). Finally, for any propositional variable a, we let I*(a) equal J*(a).

For any EUF formula, isomorphic interpretations will always yield identical valuations, giving
I*[F*] = J*[F*}. Hence the set of interpretations satisfying the restrictions of the corollary form
a sufficient set to prove the universal validity of F*. □

5 Reductions to Propositional Logic

We present two different methods of translating a PEUF formula into a propositional formula
that is tautological if and only if the original formula is universally valid. Both use the function
and predicate ehmination method described in the previous section so that the translation can be
applied to a formula F* containing only domain and predicate variables. In addition, we assume
that a subset of the domain variables S*(F) has been identified such that we only need to encode
interpretations that are diverse over these variables.

5.1 Translation Based on Bit Vector Interpretations

A formula such as F* containing only domain and propositional variables can readily be translated
into one in propositional logic, using the set of bit vectors of some length k greater than or equal
to log2 m as the domain of interpretation for a formula containing m domain variables [VB98].

28

Domain variables are represented with vectors of prepositional variables. In this formulation, we
represent a domain variable as a vector of propositional variables, where truth value false encodes
bit value 0, and truth value true encodes bit value 1. In [VB98] we described an encoding scheme
in which the i™ domain variable is encoded as a bit vector of the form (0,..., 0, a^-i, • • •, a,-,o)
where k = \log2i), and each a,-j is a propositional variable. This scheme can be viewed as
encoding interpretations of the domain variables over the integers where the fo domain variable
ranges over the set {0,..., i - 1} [PRSS99]. That is, it may equal any of its predecessors, or it
may be distinct.

We then recursively translate F* using vectors of propositional formulas to represent terms.
By this means we then reduce F* to a propositional formula that is tautological if and only if F*,
and consequently the original EUF formula F, is universally valid.

We can exploit positive equality by using fixed bit vectors, rather than vectors of propositional
variables when encoding variables in S*(F). Furthermore, we can construct our bit encodings
such that the vectors encoding variables in S* (F) never match the bit patterns encoding variables
in S*(F). As an illustration, consider formula Feg given by Equation 1 translated into formula Fe*g

as diagrammed at the bottom of Figure 4. We need only encode interpretations of the variables x,
y, vgx, vg2, vg3, vhu and vh2 that are diverse respect to the last five variables. Therefore, we can
assign 3-bit encodings to the seven variables as follows:

X (0,0,0)
y (0,0,aliO)

*>9\ (0,1,0)
vg2 (0,1,1)
"03 (1,0,0)
vh\ (1,0,1)
vh2 (1,1,0)

where a1>0 is a propositional variable. This encoding uses the same scheme as [VB98] for the
variables in S*(F) but uses fixed bit patterns for the variables in S*(F). As a consequence, we
require just a single propositional variable to encode formula F*g.

As a further refinement, we could apply methods devised by Pnueli et dl. to reduce the size of
the domains associated with each variable in S*(F) [PRSS99]. This will in turn allow us to reduce
the number of propositional variables required to encode each domain variable in S* (F).

5.2 Translation Based on Pairwise Encodings of Term Equality

Goel et al. [GSZAS98] describe a method for generating a propositional formula from an EUF
formula, such that the propositional formula will be a tautology if and only if the EUF formula is
universally valid. They first use Ackermann's method to ehminate function applications of nonzero

29

order [Ack54]. Then they introduce a propositional variable e,-j for each pair of domain variables
Vi and Vj encoding the conditions under which the two variables have matching values. Finally,
they generate a propositional formula in terms of the e; j variables.

The propositional formula they generate does not enforce constraints among the e^ variables
due to the transitivity of equality, i.e., constraints of the form e,-j A e^ =$> eijk. As a result, in
attempting to prove the formula is a tautology, they may generate false "counterexamples." They
express the set of potential counterexamples as a BDD and then systematically eliminate those that
contain transitivity violations.

We provide a modified formulation of their approach that exploits the properties of p-formulas
to encode only valuations under maximally diverse interpretations. As a consequence, we require
ejj variables only to express equality among those domain variables that represent g-term values
in the original formula.

We describe a method of expressing the transitivity constraints in our formulas that exploits the
sparse structure of the e;j variables. In practice, we have actually found that our processor models
can be verified without enforcing any transitivity constraints. Apparently the transitivity conditions
that caused problems for Goel et al. correspond to p-terms in our verifications and hence do not
require any propositional variables.

5.2.1 Construction of Propositional Formula

Starting with p-formula F, we apply our method of eliminating function applications to give a
formula F* containing only domain and propositional variables. The domain variables in F* are
partitioned into sets £*(F), corresponding to p-function applications in F, and £*(F) correspond-
ing to g-function applications in F. Let us identify the variables in £*(F) as {vu ..., vN}, and the
variables in £*(F) as {UJV+I, • • •, VN+M}- We need only encode interpretations that are diverse in
this latter set of variables.

For values of i and j such that 1 < i < j < N, define propositional variables et j encoding
the equality relation between variables Vi and VJ. We require these propositional variables only
for indices less than or equal to N. Higher indices correspond to variables in £*(F), and we can
assume for any such variable u, that it will equal variable Vj only when i = j.

For each term T in F*, and each v% with 1 < i < N + M, we generate formulas of the form
encti(T) for 1 < i < N + M to encode the conditions under which the control formulas in the
ITEs in term T will be set so that value of T becomes that of domain variable V{. In addition, for
each formula G we define a propositional formula encf(G) giving the encoded form of G. These

30

formulas are defined by mutual recursion. The base cases are:

enc/(true) = true
erac/(false) = false

encf(a) = a, a is a prepositional variable
■* encti(vi) = true

enctj(vi) = false, For i ^ j

For the logical connectives, we define encf in the obvious way:

encf(->Gi) = -*encf(Gi)

encf(GiAG2) = encf(d) A encf\G2)

enc/(Gi V G2) = encf(d) V encf (G2)

For ITE terms, we define end as:

encti(ITE(G,TuT2)) = encf {G) A end.(Tj) V ^encf(G) A end{(T2)

For equations, we define encf{Ti = T2) to be

encf{T1 = T2) = V enc<,-(Ti) A eM A end^) V \/ end^) A endi(T2)
l<i,j<N N+l<i<N+M

(6)

where e^-jj is defined for 1 < i, j < iV as:

eb,j] =

Informally, Equation 6 expresses the property that there are two ways for a pair of terms to be
equal in an interpretation. The first way is if the two terms evaluate to the same variable, i.e.,
we have both enc^(Ti) and endi{T2) hold for some variable u;. For 1 < i < N, the left hand
part of Equation 6 will hold since e^;] = true. For N + 1 < i < N, the right hand part of
Equation 6 will hold. The second way is that two terms will be equal under some interpretation
when they evaluate to two different variables u, and VJ that have the same value. In this case we
will have endi(Ti), endj(T2), and e^j] hold, where 1 < ij < N. Observe that Equation 6
encodes only interpretations that are diverse over {UAT+I, ..., VN+M}- It makes use of the fact that
when N + l<i<N + M, variable V{ will only equal variable Vj only if i = j.

As an example, Figure 7 shows an encoding of formula F* given in Figure 4, which was
derived from the original formula F shown in Figure 3. The variables in E*(F*) are x and y.
These are renamed as vx and v2, giving N = 2. The variables in S*(F*) are vglf vg2, vg3, vhu and

31

[1:T] e -o- —\e
\A

[3:T]

[4:T]

[3:eh2,4:^eh2]

:&

[5:
FJ[5:T] x

[5:T]
[6:T]

1,2 X>« :G>-

[7:T]

1,2

[6:elj2,7:^1>2]

V V V Kl *2 V3
V V

4 ^5 V6 V7

Figure 7: Encoding Example Formula in Propositional Logic. Each term T is represented as a list
giving the non-false values of encti(T).

vh2. These are relabeled as v3 through v7, giving M = 5. Each formula in the figure is annotated
by a (simplified) propositional formula, while each term T is annotated by a list with entries of the
form i: encti(T), for those entries such that encti(T) ^ false. We use the shorthand notation "T"
for true and "F" for false. Our encoding introduces a single propositional variable ei)2. It can
be seen that our method encodes only the interpretations for F* labeled as Dl and D2 in Table 2.
When e1>2 is false, we encode interpretation D2, in which x ^ y and every function application
term yields a distinct value. When ei,2 is true, we encode interpretation Dl, in which x — y and
hence we have g(x) = g{y) and h(g(x),g(g(x))) = h(g(y),g(g(y))).

In general, the final result of the recursive translation will be a propositional formula encf(F*).
The variables in this formula consist of the propositional variables that occur in F* as well as
a subset of the variables of the form e,j. Nothing in this formula enforces the transitivity of
equality. We will discuss in the next section how to impose transitivity constraints in a way that
exploits the sparse structure of the equations. Other than transitivity, we claim that the translation
encf(F*) captures validity of F*, and consequently the original p-formula F. For an interpretation
J over a set of propositional variables, including variables of the form eitj for 1 < i < j < N,
we say that J obeys transitivity when for all i, j, and k such that 1 < i,j,k < N we have
J[e[i,j]] A J[e[j,k}] =*■ J[e[t,k]}-

To formalize the intuition behind the encoding, let /* be an interpretation of the variables in
the translated formula F*. For interpretation /*, define se//.(T) to be a function mapping each

32

term T in F* to the index of the unique domain variable selected by the values of the ITE control
formulas in T. That is, se//.(ut-) = i, while selI*(ITE(G,TuT2)) is defined as se/j.(7i) when
I*[G] = true and as se/j.(T2) when I*[G\ = false.

Proposition 2 For all interpretations I* of the variables in F* and any term T occurring in F*, if
seli.(T) = i, then I*[T] = J*(u,-).

Lemma 8 For any interpretation I* of the variables in F* that is diverse for S*(F), there is an
interpretation J of the variables in encf(F*) that obeys transitivity and such that J[encf{F*)\ =
I*[F*].

Proof: For each propositional variable a occurring in F*, we define J(a) = I*(a). For each
pair of variables v{ and VJ such that 1 < i < j < N, we define J(eitj) to be true iff /*(u,-) =
I*(VJ). We can see that J must obey transitivity, because it is defined in terms of a transitive
relation in /*.

We prove the following hypothesis by induction on the expression depths:

1. For every formula G in F*: J[encf(G)} = I*[G].

2. For every term T in F* and all i such that 1 < i < N + M: J[encti(T)] = true iff
seli*{T) = i.

The base cases hold as follows:

1. Formulas of the form true, false, and a have encf(G) = G and J[G] = I*[G\.

2. Term Vj has J[encti(vj)] = true iff j = i, and selj*(vj) = i iff j = i.

Assuming the induction hypothesis holds for formulas G\ and G2, one can readily see that it
will hold for formulas -i(?i, Gx A G2, and Gx V G2, by the definition of encf

Assuming the induction hypothesis holds for formula G and for terms T\ and T2, consider term
T of the formITE(G, Tu T2). For the case where F[G] = true, we have I*[T] = I*[Ti], and also
seli»(T) = se//.(Ti). The induction hypotheses for Tx gives J[encti(Ti)\ = true iff se//.(Ti) =
i. The induction hypothesis for G gives J[encf(G)] = I*[G] = true, and hence J[encU(T)] -
J\tncti(Ti)\. From all this, we can conclude that J[encti(T)} = true iff sei ^(T) = i. A similar
argument holds when I* [G] = false, but based on the induction hypothesis for T2.

Finally, assuming the induction hypothesis holds for terms Tx and T2, consider the equation
Tx = T2. Suppose that se/j. (7i) = i and se/7»(r2) = j. Our induction hypothesis for Tx and T2

give J[encti(Tx)} = J[enctj(T2)} = true. Suppose either i > N oi j > N. Then we will have
I*(vi) = I*(vj)iffi = j. In addition, the right hand part of Equation 6 will hold under Jiff i =j.
Otherwise, suppose that 1 < i,j < N. We will have /*(«,•) = T(VJ) iff J[e[itj]\ = true. In
addition, the left hand part of Equation 6 will hold under J iff J[e[iii]] = true D

33

3.b 3.b.i 3-b.ii

Figure 8: Case Analysis for Part 3b of Proof of Lemma 9. Solid lines denote equalities, while
dashed lines denote inequalities.

Lemma 9 For every interpretation J of the variables in encf(F*) that obeys transitivity, there is
an interpretation I* of the variables in F* such that I[F*] = J[encf(F*)].

Proof: We define interpretation /* over the domain of integers {1,..., N + M}. For preposi-
tional variable a, we define I*(a) = J(a). For 1 < j < N we let I*(VJ) be the minimum value of i
such that J[e[jj]] = true. For Ar < j < N + M we let I*(VJ) = j. Observe that this interpretation
gives I*(VJ) < j for all j < N, since e^j] = true, and I*{vf) = j for j > N.

We claim that for i < N, if I*(v3) = i, then we must have I*(v{) = i as well. If instead we
had I*(vi) = k < i, then we must have «/[e^jj] = true. Combining this with Jfe^-j]] = true, the
transitivity requirement would give ./[e^j]] = true, but this would imply that I*(VJ) = k ^ i.

We prove the following hypothesis by induction on the expression depths:

1. For every formula G in F*: I*[G) = J[encf(G)}.

2. For every term T in F* and all i such that 1 < i < N + M: selj.(T) = i iff J[encti(T)} =
true.

The base cases hold as follows:

1. Formulas of the form true, false, and a have G = encf(G) and I*[G] = J[G\.

2. Term Vj has seli*(vj) = i iff j = i and J[enct{(vj)] = true iff j = i.

Assuming the induction hypothesis holds for formula G and for terms 7\ and T2, consider term
T of the form ITE(G, TUT2). For the case where J[encf(G)] = true, we have J[encU(T)] =
J[encti(Ti)]. The induction hypothesis for 7\ gives se//.(Ti) = i iff J[encfj(7\)] = true. The
induction hypothesis for G gives I*[G] = J[encf(G)] = true, giving I*[T] = I*[Ti], and also
selj*(T) = se//»(Ti). Combining all bis gives seli*(T) = i iff J[encti(T)] = true. A similar
argument can be made when J[encf(G)] = false, but based on the induction hypothesis for T2.

Finally, assuming the induction hypothesis holds for terms Ti and T2, consider the equation
Ti = T2. Let i = se//.(Ti) and j = se//.(T2). In addition, let k = I*(vi) and / = I*{v3). Our

34

induction hypothesis gives J[encU(Ti)] = true, and J[enctj(T2)] = true. Proposition 2 gives
7*[Ti] = k and I*[T2] = I. By our earlier argument, we must also have I*(vk) = k and I*(v{) = I.
We consider different cases for the values of i, j, k, and /.

1. Suppose i > N. Then we must have k = I*(vi) - i. Equation 7\ = T2 will hold under /*
iff I*(vj) = I = k, and this will hold iff j = / = k = i. In addition, the right hand part of
Equation 6 will hold under J iff i = j.

2. Suppose j > N. By an argument similar to the previous one, we will have equation Tx - T2

holding under interpretation /* and Equation 6 holding under interpretation J iff i = j.

3. Suppose 1 < ij < N. Since I*(vi) = k = I*{vk) we must have J[e[k^ = true. Similarly,
since I*(VJ) = I = I*{vi) we must have J[e[/jj] = true.

(a) Suppose k = I, and hence Ti = T2 holds under /*. Then we have J[e[i)fc]] = J[e[fc JJ] =
true. Our transitivity requirement then gives J[e[itj]] = true, and hence the left hand
part of Equation 6 will hold under J.

(b) Suppose k ^ /, and hence Tx = T2 does not hold under /*. We must have J[e[M]] =
false. This condition is illustrated in the left hand diagram of Figure 8. In this figure
we use solid fines to denote equalities and dashed fines to denote inequalities. We argue
that we must also have J[e[jjj] = false by the following case analysis for e^jj:

i. For Jfefitj]] = true, we get the case diagrammed in the middle of Figure 8 where
the diagonal fine creates a triangle with just one dashed fine (inequality). This
represents a violation of our transitivity requirement, since it indicates J[e[k j]] =
J[e[j,i]} = true. but J[e[k,i]\ ~ false,

ii. For J[e[kj]] = false and J[e[ij]] = true, we have the case diagrammed on the
right side of Figure 8. Again we have a triangle with just one dashed fine indicating
a violation of our transitivity requirement, with «/[e^,,-]] = «/[e^]] = true, but
J[elk,j]\ = false.

With J[e\i j]] = false, Equation 6 will not hold under J.

From this case analysis we see that Tx = T2 holds under /* iff Equation 6 holds under J. D

5.2.2 Transitivity Constraints

We may need to constrain our top level formula to only consider interpretations of the variables
of the form etJ that preserve the transitivity of equality. For example, if we have variables eh2,
e2)3, and elj3, we want to avoid interpretations that assign values true to two of these variables,
but false to the third. On the other hand, there is no need add transitivity constraints for cases
where the equality of two subexpressions has no bearing on the truth of our top-level formula.

35

Red Chord Black Chord

Figure 9: Case Analysis for Proof of Lemma 10. Solid lines denote black edges (equalities), while
dashed lines denote red edges (inequalities).

We therefore propose a method of enforcing transitivity that exploits the sparse structure of the
equality comparisons. We view this task as one of generating a set of constraints Trans, where
each constraint is a formula over the et j variables. Our final verification condition is then expressed
as the formula [l\GeTransG] =4> encf(F*).

Let X denote the set of all variables of the form etJ occurring in encf(F*). Create an undi-
rected graph having a vertex for every i such that 1 < i < N, and an edge (i, j) for every variable
of the form e,-j in X. For an interpretation J of the variables in X, color edge (i, j) red when
J(xij) is false and color it black when J(xitj) is true. One can see that this interpretation will
violate transitivity if and only if there is some cycle in the graph containing exactly one red edge.
This generalizes the case for triangles we saw in Figure 8, where red edges are denoted with dashed
lines. We must add constraints to Trans that eliminate such interpretations.

Rather than enumerating all of the cycles in the graph, we augment the set X with additional
variables of the form e,-j such that the resulting graph becomes chordal. [Rose70]. That is, the
graph has the property that for every cycle of length greater than 3, there is an edge (called a chord
of the cycle) connecting two vertices that are not adjacent in the cycle. Such graphs have been
studied extensively in the context of sparse Gaussian elimination. In fact, the problem of finding
a minimum set of additional variables to add to our set is identical to the problem of finding an
elimination ordering for Gaussian elimination that minimizes the amount of fill-in. Although this
problem is NP-complete [Yan81], there are good heuristic solutions.

Lemma 10 If a chordal graph contains no triangle having exactly one red edge, then it contains
no cycles containing exactly one red edge.

Proof: The proof proceeds by induction on the cycle length, with cycles of length 3 forming the
trivial base case. Assume some cycle C of length k greater than 3 contains exactly one red edge,
but no smaller cycles have this property. Cycle C must have a chord splitting it into two cycles Cx

and C2, both of which are smaller than k, and both containing the chord. Assume without loss of
generality that the red edge of C is in Cx. Consider the two cases illustrated in Figure 9. If the

36

chord is colored red (left), this would be the only red edge in cycle C2. If the chord is colored black
(right), then cycle d would contain the only red edge that occurs in C. In either case, we have
found a cycle of length less than k containing exactly one red edge, contradicting our assumption
about C. □

Assume this augmentation yields a set of variables X'. Then for every value of i, j, and k,
such that i < j and j < k, and such that there are variables eitj, eitk, and e^k in X', we add three
transitivity constraints to Trans: eitj A ejik =* e,-ifc, e,-,* A ejtk =» ei:j, and eitj A e,-,fc =» eiiJfc. These
constraints guarantee that any interpretation of the variables in X' gives an edge coloring that has
no cycle of length 3 containing exactly one red edge. By Lemma 10 this property guarantees that
no larger cycle can have exactly one red edge, either, and hence the interpretation must satisfy
transitivity.

Theorem 4 P-farmula F is universally valid iff the propositional formula [/\GeTrans G] =>• encf(F*)
is a tautology.

Proof: This theorem follows directly from Lemmas 6, 7, and 10. D

As mentioned earlier, we have found in practice that we can verify our microprocessor designs
without enforcing any transitivity constraints. The soundness of this optimization can be expressed
as follows:

Corollary 2 Ifpropositional formula [/\GeTrans> G] => encf(F*) is a tautology for some Trans' C
Trans, then p-formula F is universally valid.

5.2.3 Discussion

In the formulation by Goel et dl., a propositional variable would be required for every pair of
function applications occurring in the original formula. In our case, we need only introduce these
variables for a subset of the pairs of g-function applications. For example, their method would
require 8 variables to encode the transformed version of formula Feg shown in Figure 6, whereas
we require only 1 using either of our two encoding schemes. In addition, they found that adding
transitivity constraints to the propositional formula directly caused a blow-up of the BDDs when
evaluating the formula. In our case, we have far fewer variables, and we have proposed an approach
to add only a minimal number of additional variables and transitivity constraints.

6 Modeling Microprocessors in PEUF

Our interest is in verifying pipelined microprocessors, proving their equivalence to an unpipelined
instruction set architecture model. We use the approach pioneered by Burch and Dill [BD94] in

37

which the abstraction function from pipeline state to architectural state is computed by symboli-
cally simulating a flushing of the pipeline state and then projecting away the state of all but the
architectural state elements, such as the register file, program counter, and data memory. Opera-
tionally, we construct two sets of p-terms describing the final values of the state elements resulting
from two different symbolic simulation sequences—one from the pipeline model and one from
the instruction set model. The correctness condition is represented by a p-formula expressing the
equality of these two sets of p-terms.

Our approach starts with an RTL or gate-level model of the microprocessor and performs a
series of abstractions to create a model of the data path using terms that satisfy the restrictions
of PEUF. Examining the structure of a pipelined processor, we find that the signals we wish to
abstract as terms can be classified as follows:

Program Data: Values generated by the ALU and stored in registers and data memory. These
are also used as addresses for the data memory.

Register Identifiers: Used to index the register file

Instruction Addresses: Used to designate which instructions to fetch

Control values: Status flags, opcodes, and other signals modeled at the bit level.

By proper construction of the data path model, both program data and instruction addresses can
be represented as p-terms. Register identifiers, on the other hand, must be modeled as g-terms,
because their comparisons control the stall and bypass logic. The remaining control logic is kept
at the bit level.

In order to generate such a model, we must abstract the operation of some of the processor
units. For example, the data path ALU is abstracted as an uninterpreted p-function, generating
a data value given its data and control inputs. Formally, this requires extending the syntax for
function applications to allow both formula and term inputs. We model the PC incrementer and
the branch target logic as uninterpreted functions generating instruction addresses. We model the
branch decision logic as an uninterpreted predicate indicating whether or not to take the branch
based on data and control inputs. This allows us to abstract away the data equality test used by the
branch-on-equal instruction.

To model the register file, we use the memory model described by Burch and Dill [BD94],
creating a nested ITE structure to encode the effect of a read operation based on the history of
writes to the memory. That is, suppose at some point we have performed k write operations with
addresses given by terms Au...,Ak and data given by terms Du...,Dk. Then the effect of a
read with address term A is a the term:

ITE{A = AhDk,ITE(A = Ak_uDk-1,---ITE(A = A1,DufI(A))---)) (7)

where // is an uninterpreted function expressing the initial memory state. Note that the presence
of these comparison and ITE operations requires register identifiers to be modeled with g-terms.

38

Since we view the instruction memory as being read-only, we can model the instruction mem-
ory as a collection of uninterpreted functions and predicates—each generating a different portion
of the instruction field. Some of these will be p-functions (for generating immediate data), some
will be g-functions (for generating register identifiers), and some will be predicates (for gener-
ating the different bits of the opcode). In practice, the interpretation of different portions of an
instruction word depends on the instruction type, essentially forming a "tagged union" data type.
Extracting and interpreting the different instruction fields during processor verification is an inter-
esting research problem, but it lies outside the scope of this paper.

The data memory provides a greater modeling challenge. Since the memory addresses are
generated by the ALU, they are considered program data, which we would like to model as p-terms.
However, using a memory model similar to that used for the register file requires comparisons
between addresses and TIE operations having the comparison results as control. Instead, we must
create a more abstract memory model that weakens the semantics of a true memory to satisfy the
restrictions of PEUF. Our abstraction models a memory as a generic state machine, computing a
new state for each write operation based on the input data, address, and current state. Rather than
Equation 7, we would express the effect of a read with address term A after k write operations
as fr(Sk,A), where fr is an uninterpreted "memory read" function, and Sk is a term representing
the state of the memory after the k write operations. This term is defined recursively as So = s0,
where s0 is a domain variable representing the initial state, and Si = /„(S;-i, A-, £>,-) for i > 1,
where fu is an uninterpreted "memory update" function. In essence, we view write operations as
making arbitrary changes to the entire memory state.

This model removes some of the correlations guaranteed by the read operations of an actual
memory. For example, although it will yield identical operations for two successive read operations
to the same address, it will indicate that possibly different result could be returned if these two reads
are separated by a write, even to a different address. In addition, if we write data D to address A and
then immediately read from this address, our model will not indicate that the resulting value must
be D. Nonetheless, it can readily be seen that this abstraction is a conservative approximation of
an actual memory. As long as the pipelined processor performs only the write operations indicated
by the program, that it performs writes in program order, and that the ordering of reads relative to
writes matches the program order, the two simulations will produce equal terms representing the
final memory states.

The remaining parts of the data path include comparators comparing for matching register
identifiers to determine bypass and stall conditions, and multiplexors, modeled as ITE operations
selecting between alternate data and instruction address sources. Since register identifiers are
modeled as g-terms, these comparison and control combinations obey the restrictions of PEUF.
Finally, such operations as instruction decoding and pipeline control are modeled at the bit level
using Boolean operations.

39

7 Experimental Results

In [VB98], we described the implementation of a symbolic simulator for verifying pipelined sys-
tems using vectors of Boolean variables to encode domain variables, effectively treating all terms
as g-terms. This simulation is performed directly on a modified gate-level representation of the
processor. In this modified version, we replace all state holding elements (registers, memories,
and latches) with behavioral models we call Efficient Memory Models (EMMs). In addition all
data-transformation elements (e.g., ALUs, shifters, PC incrementers) are replaced by read-only
EMMs, which effectively implement the transformation of function applications into nested ITE
expressions described in Section 4.2. One interesting feature of this implementation is that our
decision procedure is executed directly as part of the symbolic simulation. Whereas other im-
plementations, including Burch and Dill's, first generate a formula and then decide its validity,
our implementation generates and manipulates bit-vector representations of terms as the symbolic
simulation proceeds. Modifying this program to exploit positive equality simply involves having
the EMMs generate expressions containing fixed bit patterns rather than vectors of Boolean vari-
ables. All performance results presented here were measured on a 125 MHz Sun Microsystems
SPARC-20.

We constructed several simple pipeline processor design based on the MIPS instruction set
[KH92]. We abstract register identifiers as g-terms, and hence our verification covers all possible
numbers of program registers including the 32 of the MIPS instruction set. The simplest version
of the pipeline implements ten different Register-Register and Register-Immediate instructions.
Our program could verify this design in 48 seconds of CPU time and just 7 MB of memory using
vectors of Boolean variables to encode domain variables. Using fixed bit patterns reduces the
complexity of the verification to 6 seconds and 2 MB.

We then added a memory stage to implement load and store instructions. An interlock stalls
the processor one cycle when a load instruction is followed by an instruction requiring the loaded
result. Treating all terms as g-terms and using vectors of Boolean variables to encode domain
variables, we could not verify even a 4-bit version of this data path (effectively reducing |X>j to
16), despite running for over 2000 seconds. The fact that both addresses and data for the memory
come from the register file induces a circular constraint on the ordering of BDD variables encoding
the terms. On the other hand, exploiting positive equality by using fixed bit patterns for register
values eliminates these variable ordering concerns. As a consequence, we could verify this design
in just 12 CPU seconds using 1.8 MB.

Finally, we verified a complete CPU, with a 5-stage pipeline implementing 10 ALU instruc-
tions, load and store, and MIPS instructions j (JumP with target computed from instruction word),
j r (jump using register value as target), and beq (branch on equal). This design is comparable
to the DLX design [HP96] verified by Burch and Dill in [BD94], although our version contains
more of the implementation details. We were unable to verify this processor using the scheme of
[VB98]. Having instruction addresses dependent on instruction or data values leads to exponential
BDD growth when modeling the instruction memory. Modeling instruction addresses as p-terms,

40

on the other hand, makes this verification tractable. We can verify the full, 32-bit version of the
processor using 169 CPU seconds and 7.5 MB.

8 Conclusions

Eliminating Boolean variables in the encoding of terms representing program data and instruction
addresses has given us a major breakthrough in our ability to verify pipelined processors. Our BDD
variables now only encode control conditions and register identifiers. For classic RISC pipelines,
the resulting state space is small and regular enough to be handled readily with BDDs.

We believe that there are many optimizations that will yield further improvements in the per-
formance of Boolean methods for deciding formulas involving uninterpreted functions. We have
found that relaxing functional consistency constraints to allow independent functionality of dif-
ferent instructions, as was done in [DPR98], can dramatically improve both memory and time
performance. We look forward to testing our scheme for generating a propositional formula using
Boolean variables to encode the relations between terms. Our method exploits positive equality
to greatly reduce the number of propositional variables in the generated formula, as well as the
number of functional consistency and transitivity constraints. We are also considering the use of
satisfiability checkers rather than BDDs for performing our tautology checking

We consider pipelined processor verification to be a "grand challenge" problem for formal
verification. We have found that complexity grows rapidly as we move to more complex pipelines,
including ones with out-of-order execution and register renaming. Further breakthroughs will be
required before we can handle complete models of state-of-the art processors.

References

[Ack54] W Ackermann, Solvable Cases of the Decision Problem, North-Holland, Amster-
dam, 1954.

[BDL96] C. Barrett, D. Dill, and J. Levitt, "Validity checking for combinations of theories with
equality," Formal Methods in Computer-Aided Design (FMCAD '96), M. Srivas and
A. Camilleri, eds., LNCS 1166, Springer-Verlag, November, 1996, pp. 187-201.

[BBCZ98] S. Berezin, A. Biere, E. M. Clarke, and Y. Zhu, "Combining symbolic model check-
ing with uninterpreted functions for out of order processor verification," Formal
Methods in Computer-Aided Design (FMCAD '98), G. Gopalakrishnan and P. Wind-
ley, eds., LNCS 1522, Springer-Verlag, November, 1998, pp. 187-201.

[Bry86] R. E. Bryant, "Graph-based algorithms for Boolean function manipulation", IEEE
Transactions on Computers, Vol. C-35, No. 8 (August, 1986), pp. 677-691.

41

[BD94] J. R. Burch, and D. L. Dill, "Automated verification of pipelined microprocessor con-
trol," Computer-Aided Verification (CAV '94), D. L. Dill, ed., LNCS 818, Springer-
Verlag, June, 1994, pp. 68-80.

[Bur96] J. R. Burch, "Techniques for verifying superscalar microprocessors," 33rd Design
Automation Conference (DAC '96), June, 1996, pp. 552-557.

[DPR98] W. Damm, A. Pnueli, and S. Ruah, "Herbrand automata for hardware verification,"
9th International Conference on Concurrency Theory (CONCUR '98), Springer-
Verlag, September, 1998.

[GJ79] M. R. Garey, and D. S. Johnson, Computers and Intractability, W. H. Freeman and
Company, 1979.

[GSZAS98] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V Singhai, "BDD based procedures for a
theory of equality with uninterpreted functions," Computer-Aided Verification (CAV
'98), A. J. Hu and M. Y. Vardi, eds., LNCS 1427, Springer-Verlag, June, 1998,
pp. 244-255.

[HP96] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 2nd edition Morgan-Kaufmann, San Francisco, 1996.

[HKGB97] R. Hojati, A. Kuehlmann, S. German, and R. K. Brayton, "Validity checking in the
theory of equality with uinterpreted functions using finite instantiations," Unpub-
lished paper presented at the International Workshop on Logic Synthesis, 1997.

[KH92] G. Kane, and J. Heinrich, MIPS RISC Architecture, Prentice Hall, 1992.

[NO80] G. Nelson, and D. C. Oppen, "Fast decision procedures based on the congruence
closure," /. ACM, Vol. 27, No. 2 (1980), pp. 356-364.

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, "Deciding equality formulas by
small-domain instantiations," Computer-Aided Verification CAV '99,1999.

[Rose70] Rose, D., "Triangulated graphs and the ehmination process," Journal of Mathemati-
cal Analysis and Applications, Vol. 32 (1970), pp. 597-609.

[Sho79] R. E. Shostak, "A practical decision procedure for arithmetic with function symbols,"
J. ACM, Vol. 26, No. 2 (1979), pp. 351-360.

[VB98] M. N. Velev, and R. E. Bryant, "Bit-level abstraction in the verification of pipelined
microprocessors by correspondence checking." Formal Methods in Computer-Aided
Design (FMCAD '98), G. Gopalakrishnan and P. Windley, eds., LNCS 1522,
Springer-Verlag, November, 1998, pp. 18-35.

42

[Yan81] M. Yannakakis, "Computing the minimum fill-in is NP-complete," SIAM Journal of
Algebraic and Discrete Mathematics, Vol. 2 (1981), pp. 77-79.

43

